-PARCHIVE Challenges of Collecting &
— Preserving the Social Web
—F

L
=
o
L
e
v

= Not all data can be crawled

= Research and experimentation are essential to keep pace with publisher innovation
= Publishers can choose to “opt in” or “opt out™

» Harvested data is hard to make accessible

= Only a fraction of the social content on the Web is visible to anonymous visitors -
= Almost all views are personalized Ic r

fﬂ:ehok Home Profile Friends Inbox (8 Kris Carpenter Negulescu |
s Search

Linkedwa People Jobs Answers Companies I Improved Search!

Search for a person or compan
Explore People Search: Harvard - Vice President at Google - Accounting Search People x|
B iicwa Upgrade now - get the most from Lin|
gxa Groups &l
— £ Profile + Inbox (2 unread) Feopl
B contacts 3 - P telld
Abigail Grotke Invitation to connect takeaction » | Eooo
™ Inbox (2) T
. Ross A. Mcintyre Can you endorse me? Archive
2 Applications +
Action items: Invitations (1), Recommendations (1), See all messages »
| Phil }

Presenter
Presentation Notes
High expectations of privacy

“Walled garden” feature and a challenge

Previously open activity moving into private areas

Utility of friend networks

Retreat from spam/anonymous hostility

Replacing homepages, events, organization pages that were archivable

Still subject to same decay

Companies change, fail, don’t value preservation

F
L
=
o
L
e
v

ARCHIVE Primary Approaches to
w Social Media Capture Today

Web Crawlers (e.g. Heritrix)

Still a robust solution able to capture most content, including
JavaScript. Often best method for capturing embedded media or
media from accounts you don’t “own”/operate.

Scripted Browsers/Browser simulations
Rather than an automated crawl, a browser based tool can be

Instructed to mimic the behavior of a user and to archive what the
browser “sees”.

APIs

Subscription/account based server request/responses that often
Include metadata not available to a crawler or browser. Often used
to archive social media accounts you “own”/operate.

~®ARCHIVE

. Classical Harvest Model.
I | l l Crawling
—

Pull from queue

Pick a
location
Document Make a GET/

(S8
P
s
0
-
=

text/css

image/gif Examine for Receive a HTTP/1.0 200 OK
Ir%agellpg references Response

viaeo

JavasScript

Presenter
Presentation Notes
Harvests are at best samples

-Time & expense: can’t get everything

-Rate of change: don’t get every version

-Rate of collection: issues of ‘time skew’

Choice of User agents/protocols

If you crawl as the Mozilla agent your content may not redisplay in IE

Which mobile agents should you crawl as, if any?

Site structure & publishing models

Some parts of sites are not “archive-friendly” (JavaScript, AJAX, Flash, etc.)

Change both their technical structure and policy quickly and often (YouTube, Facebook, etc)

HERITRIX

Open source

Archival quality – WARC format ISO 28500

Flexible

Extensible

Free – Apache License (https://raw.github.com/internetarchive/heritrix3/master/dist/LICENSE.txt)

https://github.com/internetarchive/heritrix3

http://crawler.archive.org

ARCHIVE Differences Between

- l l a Crawler and a Browser

F
(S8
P
s
0
-
=

. Browsers grab all embedded resources as soon
as possible

 Typical behavior is a burst of traffic followed by long
pauses.

. Crawlers have to play by different rules

« Typical behavior is sustained traffic.

- Can quickly overwhelm a website
- Must apply intentional delays

« Must obey robots.txt rules

~®ARCHIVE

g aengt%@
Foundation

Ongoing Experiments &
Implementations

Open Planets (browser extractor module as alt for link
extractor in H3):

https://www.github.com/openplanets/wap

INA/IIPC (browser w/inline caching proxy; simulates user
actions, outputs to WARC):

https://github.com/davidrapin/fantomas

NDIIPP/NDSA (integrated crawler & browser w/caching
proxy...):
https://github.com/adam-miller/ExternalBrowserExtractorHTML

https://github.com/adam-miller/phantomBrowserExtractor
(PhantomJS behavior scripts)

Presenter
Presentation Notes
WAP uses an H3 extractor module that replaces the javascript extractor module. WAP sends a subset of pages (specifically, the seeds) to a headless browser service based on PhantomJS using a message queue. The service renders each seed and enumerates all the resource dependencies (including JavaScript ones). The URLs discovered in this way are then passed back to H3 and downloaded using the crawler.

INA: Implemented an inline proxy cache to enable capture via browser and crawler.

NDSA: Experimenting with a range of implementations.

Integrate a browser into link extraction pipeline: Log all requests and queue in Crawler (Heritrix)

Capture via Headless browsers

Smaller & Faster

No need to render the page visually

Capture via Full browser replay/simulations

PhantomJS - built on webkit engine

(Safari, iOS, Chrome, Android)

Auto-QA, snapshot generation, scripted navigation…

S ARCHIVE Merging Browsing & Crawling:
—_—

How Much 1s Gained?

Traditional Link Extraction: Baseline Test

« 7444 URIs (200 response)
« 795 URIs (404 response

« Browser only (full instance or scripted headless). ~30% less content

« PhantomJS (WITH traditional link extractor): +24%

+ Significant improvement in unique URI detection
- Additional processing overhead

...but can distribute load to dedicated browser nodes
+ Browser downloads in a separate workflow, asynchronous from Heritrix

+ JavaScript analytics

Presenter
Presentation Notes
Reconciling Disparate Download designs

Restrict Duplicate Downloads

Log all browser requests, but intercept and only allow HTML and JavaScript requests through

Eliminate all Duplicates

Browser runs through inline caching proxy. Crawler fetches browser discovered items only via the proxy.

Proxy stats show 50% cache hit ratio.

The first challenge is that H3 fetches content synchronously. You can't render a page in a browser using H3 as the source to capture data, because you could be waiting hours or more for all of the page resources to make it to the front of the queue. Also, items may have already been downloaded, so H3 would not fetch them again in a single crawl. So various teams implemented the browser as an extractor processor with different criteria for inclusion. In the OpenPlanets use case, all seeds were selected for rendering. In the Elections 2012/NDSA use case, if a received item was an html or similar mime type, it was pushed to a browser for rendering. The browser then requests all of the necessary resources and logs them. The log is then fed back into H3 for queueing. This works, but is inefficient because all of the resources for each page of a site are requested, many of which are repeated each time (css, JavaScript). Also, each item is requested again by H3 within the normal workflow. To reduce the impact, in the NDSA use case, Adam Miller forked the browser (phantomJS) to only request JavaScript, but log the rest. This reduced the duplicate fetches, but missed content. After discussions with David Rapin of INA, Adam decided to add a caching proxy (Squid) to the browser. This saved the duplicate requests per page of a single site, but still left H3 downloading everything again.

Developers have discussed adding an asynchronous fetch capability to H3, and that may still be the optimal solution, but in the short term there is a work around. You can annotate the browser discovered items, and when they come up for the fetch cycle, redirect H3 to request through the same cache proxy and avoid re-downloading the item. Unfortunately, you can't just send all H3 requests through the proxy, since most of the content is guaranteed to only be fetched once, that would kill the cache quickly. But, narrowing it down to things you know went through the cache restored exactly one fetch for every item regardless of whether it was found by the browser or by Heritrix. Testing on a crawl of about 350 seeds shows minimal performance impact (50ms for a cache miss) and you get a fairly consistent cache hit rate of around 50%. This is expected since each item is a miss on the first discovery by the browser, and then a cache hit when H3 comes around to fetch the item on its own. IA used a Squid proxy with a 1GB in memory cache, and a maximum object size of 512KB. Large objects from the browser shouldn't be an issue since the extractor only attempts to render html mime types, and have a timeout of 30s for the browser.

ARCHIVE

i Other Strategies &
| l l Implementations

F
L
=
o
L
e
v

Data Mining & Analytics
* Pre-Crawl Seed & Link Analysis

» Link/Script Analysis during an Active Crawl
= Post Crawl Link/Script Analysis, Patching & Auto QA

Native Feeds, APIs & Alternate Capture Methods

» Data format and context is as important as the content

" E.g. @ArchiveSncial

ﬁ‘ﬁl Phantom)S

Snapshot Generation & Recording

Increasing Knowledge Connectivity & Reasoning

Internet Evolution
| Web 3.0 Wep
The Semantic Web 24
h ‘Connects Knowledge Semantic:
Ontologies (2005 - Eazﬂ) e
<Gt gaarch
: > Gaming
¥ Enlerprise S Co
e =P v,
Content Portals g '
Web 1.0~ Web Sites Web 2.0
The Web The Social Web s
Conne ‘R'nuwledge PIMS Connects Knowledge bookmarking
Databases)1 90 - 2000) (2000 - 2010)
> Publishﬁbscﬂhe e
” Instant Messaging Social
o File Sarvars P2P File $haring Conferencing Networks

-

Increasing Social Connectivity

Source: Mova Spivak, Radar Networks & Mills Davis, Project10x

Presenter
Presentation Notes
“A Good Harvest starts with the Curator/s…”

Curatorial Challenges

Harvests are, at best, samples

Can't get every version

What you ask for is what you get…

e.g. IE Browser vs. iPhone

Technical Challenges

Sites in general are not “archive friendly”

Complex JavaScript, flash, behind a login, personalized, etc.

Where the Classical Harvest Model Can & Does Fail…

Desktop-like Interactive Applications

(“AJAX”, “Web 2/3/4.0”, HTML5 style dynamic, server-side forms and features, content serving, inconsistent URI presentation, personalized/alternate views)

Complex Service & Content Mash-ups

Social Networks & Applications

Streaming Media

Immersive Worlds (Second Life, World of Warcraft, etc.)

	Slide Number 1
	Primary Approaches to �Social Media Capture Today
	Classical Harvest Model: Crawling
	Differences Between �a Crawler and a Browser
	Ongoing Experiments & Implementations
	Merging Browsing & Crawling: �How Much is Gained?
	Other Strategies & Implementations
	Slide Number 8

